Reduced nighttime transpiration is a relevant breeding target for high water-use efficiency in grapevine.
نویسندگان
چکیده
Increasing water scarcity challenges crop sustainability in many regions. As a consequence, the enhancement of transpiration efficiency (TE)-that is, the biomass produced per unit of water transpired-has become crucial in breeding programs. This could be achieved by reducing plant transpiration through a better closure of the stomatal pores at the leaf surface. However, this strategy generally also lowers growth, as stomatal opening is necessary for the capture of atmospheric CO2 that feeds daytime photosynthesis. Here, we considered the reduction in transpiration rate at night (En) as a possible strategy to limit water use without altering growth. For this purpose, we carried out a genetic analysis for En and TE in grapevine, a major crop in drought-prone areas. Using recently developed phenotyping facilities, potted plants of a cross between Syrah and Grenache cultivars were screened for 2 y under well-watered and moderate soil water deficit scenarios. High genetic variability was found for En under both scenarios and was primarily associated with residual diffusion through the stomata. Five quantitative trait loci (QTLs) were detected that underlay genetic variability in En Interestingly, four of them colocalized with QTLs for TE. Moreover, genotypes with favorable alleles on these common QTLs exhibited reduced En without altered growth. These results demonstrate the interest of breeding grapevine for lower water loss at night and pave the way to breeding other crops with this underexploited trait for higher TE.
منابع مشابه
Stomatal Density as a Selection Criterion for Developing Tea Varieties with High Physiological Efficiency
Stomata, the small opening in leaf connecting plant with atmosphere, play pivotal roles in global water and carbon cycles. Stomata regulate the two key important physiological functions viz. photosynthesis and transpiration and thus are crucial for performance of crop species in changing climatic conditions. Although environmental factors influence the density and size of stomata, the genetic c...
متن کاملPhylogenetic and ecological patterns in nighttime transpiration among five members of the genus Rubus co-occurring in western Oregon
Nighttime transpiration is a substantial portion of ecosystem water budgets, but few studies compare water use of closely related co-occurring species in a phylogenetic context. Nighttime transpiration can range up to 69% of daytime rates and vary between species, ecosystem, and functional type. We examined leaf-level daytime and nighttime gas exchange of five species of the genus Rubus co-occu...
متن کاملCan diversity in root architecture explain plant water use efficiency? A modeling study
Drought stress is a dominant constraint to crop production. Breeding crops with adapted root systems for effective uptake of water represents a novel strategy to increase crop drought resistance. Due to complex interaction between root traits and high diversity of hydrological conditions, modeling provides important information for trait based selection. In this work we use a root architecture ...
متن کاملGenetic variation in transpiration efficiency and relationships between whole plant and leaf gas exchange measurements in Saccharum spp. and related germplasm
Fifty-one genotypes of sugarcane (Saccharum spp.) or closely related germplasm were evaluated in a pot experiment to examine genetic variation in transpiration efficiency. Significant variation in whole plant transpiration efficiency was observed, with the difference between lowest and highest genotypes being about 40% of the mean. Leaf gas exchange measurements were made across a wide range of...
متن کاملAssociation of transpiration efficiency with N2 fixation of peanut under early season drought
Peanut is grown mostly in rainfed areas where drought is a recurring problem. Peanut genotypes with high transpiration efficiency (TE) use less water and produced yield better under drought conditions. Specific leaf area and SPAD chlorophyll meter reading are used as surrogate traits for TE. N2 fixation (NF) is also used as a surrogate trait for yield under drought. The objective of this study ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 113 32 شماره
صفحات -
تاریخ انتشار 2016